Preface
CHAPTER 1. Foundations1.1. Manifolds1.2. Definition of a Dynamical System1.3. Elements of Topological Dynamics1.4. Linear maps1.5.
CHAPTER 2. Dynamics of Degree One Circle Maps2.1. Degree of circle maps2.2. The Poincar´e rotation number2.3. Circle maps with irrational rotation numberBibliographicNotes and Panoramas
CHAPTER 3. Introduction to Local Laminations3.1. First notations and examples3.2. Basic specification methods3.3. Limit sets of a curve and leaf3.4. Orientable and
CHAPTER 4. Poincar´e -Bendixson Theory for Local Laminations4.1. Poincar´
CHAPTER 5. Introduction to Anosov -Weil Theory5.1. Introductory concepts and notions5.2. The theoremand conjecture ofWeil5.3. Anosov theorems on asymptotic directions and approximations of curves5.4. Nonlocal asymptotic behavior of special curves5.5. Geodesic frameworks of local laminations5.6. Deviations of curves
CHAPTER 6. Classification of Surface Foliations, Webs, and Homeomorphisms6.1. Elements of the
CHAPTER 7. Chaotic Dynamical Systems with Minimal Entropy7.1. Properties of hyperbolic automorphisms7.2. Geodesic laminations and hyperbolic automorphisms7.3. Strongly irrational transversal geodesic lamination7.4. Hyperbolic homeomorphisms induced by hyperbolic automorphisms7.5. Topological entropy of hyperbolic homeomorphismsBibliographicNotes and Panoramas
CHAPTER 8.
CHAPTER 9. Structural Stability and Anosov -Weil Theory9.1. Asymptotic properties of invariantmanifolds9.2. Conditions of bound deviation of invariant manifolds from coasymptotic geodesicsBibliographicNotes and PanoramasBibliography